

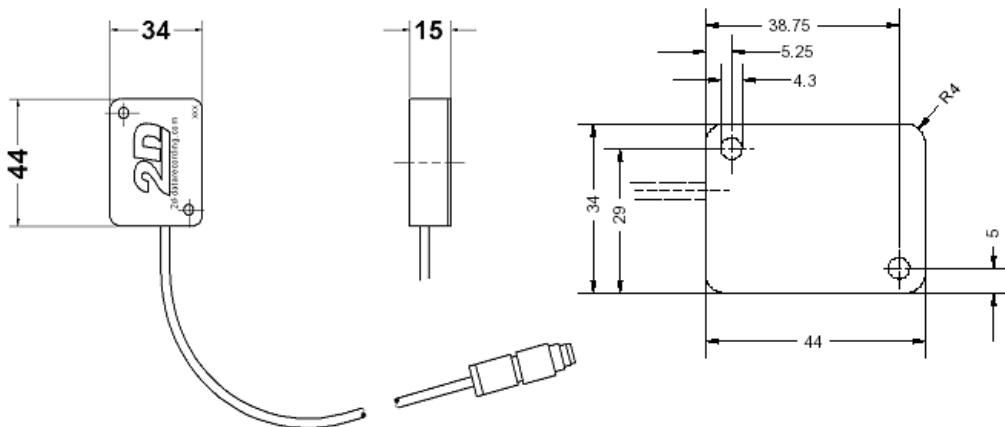
Key Features

- GPS/GNSS features
 - 25 Hz GNSS receiver (GPS, Galileo, GLONASS and BeiDou are received concurrently)
 - SBAS and QZSS augmentation support
 - Typical accuracy of CEP < 1.00 m
 - Speed, Course and Position accuracy channels
 - Automatic GPS laptrigger detection for more than 330 racetracks worldwide
 - Additional user configurable GPS position for individual GPS lap time calculation
- Interface type: CAN(-FD) Bus
- Optional with built-in 6DoF-IMU (BC_GNSS2CAN_3A3G-00x)
 - Integrated 6 DoF (optional 9DoF)
 - IMU with range +/- 16 G (optional +/- 30 G)
 - Up to 1000 Hz IMU signal output
 - Internal calibration and temperature compensation
 - Built-in orientation correction to rotate mounting position of the module internally to the vehicles coordinate system
 - Additional first order IIR filter for individual filtering for all axes
- Speed pulse signal or lap trigger output
- Math (CALC) channels for online calculations
- Online roll angle calculation
- Module can work with GPS laptriggers as TransponderX2 simulator
- Mechanical features
 - Compact and light weight housing (Rugged and waterproof (IP67))
 - Mounting by screws

Available options

_3A3G-001	Integrated 6 DoF IMU with individual range selection for Acc ($\pm 2/4/8/16$ G) and Gyros ($\pm 250/500/1000/2000$ °/s)
_3A3G-002	Integrated 6 DoF IMU with individual range selection for Acc ($\pm 4/8/16/30$ G) and Gyros ($\pm 500/1000/2000/4000$ °/s)

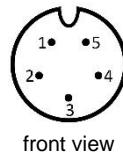
_3A3G-options are enabled/disabled via firmware update of the module!



Technical specifications

CAN characteristics			Mechanical		
CAN(-FD) lines		1	Dimensions	mm	44 x 34 x 15
CAN Baud rate	kBd	up to 2000	Weight Bike (cable included)	g	80
CAN-FD Baud rate	Mbit	2 / 4 / 5 / 8	Housing material		Aluminum / PC
Transmission rate CAN channels	Hz	max. 1000	Connector		Binder 712, 5PM
3 axis accelerometers (optional)			Cable Type		Raychem
Range (switchable for all 3 axes)	G	±2/±4/±8/±16	Wire cross section		5x AWG26
Error of linearity	FS	±0.5%	Length	mm	400
Lowpass filter (programmable)	Hz	10 to 250			
Sampling rate	Hz	1000			
3 axis gyroscopes (optional)					
Range (switchable for all 3 axes)	°/s	250 / 500 / 1000 / 2000			
Error for linearity	FS	±0.1%			
Low-pass filter (programmable)	Hz	10 to 250			
Sampling rate	Hz	1000			
3 axis magnetometer (optional)					
Range	µT	±4900			
Sampling rate	Hz	100			
Speed Pulse / Laptrigger out					
Pulse output via open collector	P/min	max. 1000			
Sink current	mA	20			
Ordering information					
BC-GNSS2CAN-000					
BC-GNSS2CAN_IMU-000					
BC-GNSS2CAN_IMU_Full-000					
with 2000mm cable length					
BC-GNSS2CAN-001					
BC-GNSS2CAN_IMU-001					
BC-GNSS2CAN_IMU_Full-001					
with IMU (200Hz)					
with IMU (1000Hz)					

Dimensions


The specifications on this document are subject to change at 2D decision. 2D assumes no responsibility for any claims or damages arising out of the use of this document, or from the use of modules based on this document, including but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights.

Connector layout

Connector type

CAN line, Binder 712 5PM

Pin	Name	Description	Color
1	CAN H	CAN high	white
2	CAN L	CAN low	green
3	GND	Ground	black
4	Speed/Lap	Speed Pulse / Laptrigger	blue
5	Vext	Power supply	red

front view

Connector and cable length can be modified on customer request

Default CAN identifiers

CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
0x790	V_Sat		ValidSat		SSH		Course	
0x791	Lat_dez			Lon_dez				
0x792	Altitude		MMDD		HHMM			
0x793	HorAccu	VerAccu		SpAccu		CourAccu		
	Speed_N	Speed_E		Speed_D		Speed_3D		
	HDOP	GDOP		PDOP		VDOP		
	Year	Month	Day	Hour	Min	Sec	hSec	
	Latitude				Longitude			
	A_Lat	A_Lon			Banking		Yawrate	
with integrated IMU								
	ACC_X_RAW	ACC_Y_RAW	ACC_Z_RAW		ACC_N_RAW			
	Gyro_X_RAW	Gyro_Y_RAW	Gyro_Z_RAW		Vext			
	MAG_X_GNSS	MAG_Y_GNSS	MAG_Z_GNSS		V_Dout			
	ACC_X_IIR	ACC_Y_IIR	ACC_Z_IIR		ACC_N_IIR			
	Gyro_X_IIR	Gyro_Y_IIR	Gyro_Z_IIR		TEMP_GYRO			
0x450	ACC_X_GNSS	ACC_Y_GNSS	ACC_Z_GNSS		ACC_N_GNSS			
0x458	Gyro_X_GNSS	Gyro_Y_GNSS	Gyro_Z_GNSS		TEMP_GNSS			

Mounting Instructions

Improper mounting of the GNSS Receiver can result in bad GNSS accuracy!

- Mount the GNSS Receiver solid / rigid to the vehicle, avoid vibrations and do not use velcro or similar.
- Mount the GNSS Receiver to a stable and low or non-vibrating part of the vehicle
- The GNSS Receiver must be mounted on the top of the vehicle and be oriented parallel to the horizon.
- The optimum receiver location must have “unshaded” direct view to the sky.
- When mounting the receiver on non-metal surfaces, please use the self-adhesive ground plane - AC-GNSS_ground_plane-000

Documentation reference

For more information about *Mounting Instructions* please see manual

GPS – General description on our website:

<http://2d-datarecording.com/downloads/manuals/>

Downloads

- [GPS – General description](#)
- [Revision of GNSS](#)
- [Overview 2D GPS/GNSS modules](#)

IIR Filter Channel Group (xxx_IIR)

Each IIR channel is directly linked to the raw channel of the IMU (xxx_RAW). Using the parameter “filter” you can set the desired filter frequency as follows:

$$f_{IIR} = \frac{f_{sampling\ rate\ raw}}{2^{Filterstep}}$$

Example: Filterstep 4; sampling rate of raw channel = 200Hz
→ IIR filter frequency = 12.5Hz

Averaging

If the sampling rate of an IIR channel is set lower than the rate of the raw channel, an average is calculated by the ratio of raw channel to the IIR channel.

Example: If the raw channel is set to 1000Hz and the IIR channel is set to 100Hz, an additional average of 10 samples is calculated.

Rotation Channel Group (xxx_ROT)

The rotation channels are linked directly to the IIR channels, every change of standard and IIR channel will influence the rotation channel. The misalignment can be compensated by entering the mounting angles in comparison to the orthographic system to the rotation channels.

Example: If the sensor is tilted 10 degrees forward and mounted upright,
→ mounting angles to insert: x=90°; y=10°; z=10°

Maximum Sampling Rate

The sampling rate for the IIR / ROT channel can never exceed sampling rate of the raw channel