

Key Features:

- 6 axes inertia sensor with optimized axes alignment
- Individual range selection for accelerometers ($\pm 2/4/8/16G$) and gyros ($\pm 250/500/1000/2000^{\circ}/s$)
- Fully programmable CAN Interface(Baudrate/CAN Identifiers)
- Built-in coordinate transformation for non-orthogonal mounting compensation
- Programmable phase corrected sensor filters for all axes
- Additional IIR filter for individual adjustment for all axes
- USER programmable channels for additional online mathematical calculations
- Roll-angle calculation (on request)
- Internal sampling with 1600Hz@16bit resolution
Output sampling rate free programmable
- Internal calibration, temperature compensation and physical unit calculation; USER programmable

BC-3Axx_3Gyyyy-000

Box CAN, 3 axes accelerometer, 3 GYRO

Technical Specifications

Specification 3 axis acceleration		Mechanical characteristics	
Range switchable with 3 axis	±2, ±4, ±8, ±16 G	Dimensions	44 x 34 x 11 mm
Error of linearity	<1 % FS	Weight (incl. cable)	60 g
Lowpass filter response(programmable)	5 to 250Hz	Housing material	Aluminium
Specification yaw-rate sensor		Cable	
Sensitivity	± 250, 500, 1000, 2000 °/s	type	Raychem EPD
Error for linearity	<1% FS	wire cross section	4 x AWG26
Lowpass filter response(programmable)	5 to 250 Hz	length	1000 mm
CAN Output		Environmental data	
CAN ID	User programmable	Operating temperature	-10 to 75 °C
Transmission rate, programmable by user	from 25 to 800 Hz	Temperature compensation	25 to 75 °C
Transmission rate, preset to	100Hz	Humidity	5 to 95 %
CAN ID 3 axes ACC preset to	0x498	Sealing class	IP 67
3 axes gyro preset to	0x499		
see 2 nd page for CAN identifier allocation		Vibration resistance	
		Shock	50 G
		during a time period of	10 ms
		Vibration tested at	12 G
		with a frequency of	1000 Hz
Operating status indicator		Ordering Information	
Red LED flashing		Use this article number for your order at 2D:	
		3 axis ACC, 3 axis Gyro	
Electrical characteristics		BC-3Axx3Gyyyy-000	
Power supply	8 – 18 VDC		
Consumption @ 12V	40 mA		

Formula to calculate IIR-filter (ACC_X_IIR – GYRO_Z_IIR; optional)

General:

Every axis is internally sampled with 1600Hz; depending on transmitting (sampling) rate, automatically an average signal is calculated.

Example: If 100Hz transmission rate is selected, every 16 samples are averaged.

Please note: sampling rate for IIR channel can never exceed sampling rate of source channel

Calculation of Filter frequency:

Each IIR channel is directly linked to the original channel with the same name. Using the parameter "filter" you can set the desired filter frequency as follows:

$$f_{cut} = \frac{f_{sample}}{2_{filter}}$$

Example: Filterstep 4; Samplingrate_(original channel) 200Hz → filter frequency 12.5Hz

Averaging:

If the samplingrate of an IIR channel is set lower than the rate of the dedicated origin channels, an average is calculated by the ratio of origin channel to IIR channel.

Example: If the origin channel is set to 400 Hz and the IIR channel is set to 100 Hz, an additional average of 4 is calculated.

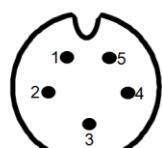
Rotation channel group (ACC_X_ROT – GYRO_X_ROT; optional)

The rotation channels are linked directly to the IIR channels, every change of standard and IIR channel will influence the rotation channel. The misalignment can be compensated by entering the mounting angles in comparison to the orthographic system to the rotation channels.

Example: If sensor is tilt 10 degree forward and mounted upright, mounting angles to insert are: $x=90^\circ$; $y=10^\circ$; $z=10^\circ$

BC-3Axx_3Gyyy-000
Box CAN, 3 axes accelerometer, 3 GYRO
Dimensions

CAN identifier allocation
CAN ID (default)


CAN-ID	Byte 0 Hi	Byte 1 Lo	Byte 2 Hi	Byte 3 Lo	Byte 4 Hi	Byte 5 Lo	Byte 6 Hi	Byte 7 Lo
0x000	ACC_X		ACC_Y		ACC_Z		ACC_N	
0x000	GYRO_X		GYRO_Y		GYRO_Z		Temp	
0x000*	ACC_X_IIR		ACC_Y_IIR		ACC_Z_IIR		ACC_N_IIR	
0x000*	GYRO_X_IIR		GYRO_Y_IIR		GYRO_Z_IIR		Temp_IIR	
0x498	ACC_X_ROT		ACC_Y_ROT		ACC_Z_ROT		ACC_N_ROT	
0x499	GYRO_X_ROT		GYRO_Y_ROT		GYRO_Z_ROT		Temp_ROT	

*optional
Formulas to calculate physical values

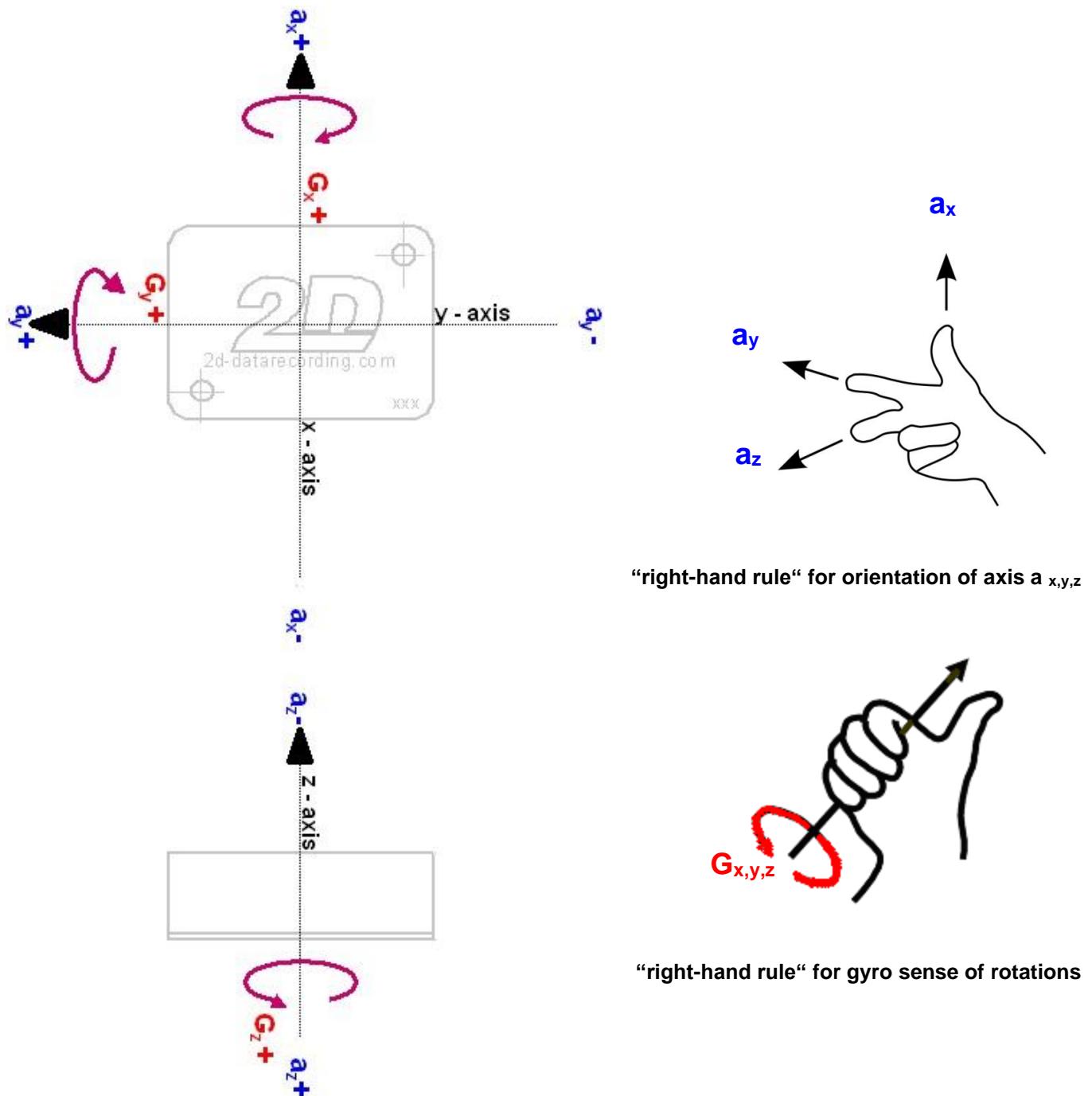
Channel	Multiplicator	Offset	Channel	Multiplicator	Offset
ACC_X [m/s ²]	= 0,005	* digits - 163,835	GYRO_X [°/s]	= 0,01	* digits - 327,67
ACC_Y [m/s ²]	= 0,005	* digits - 163,835	GYRO_Y [°/s]	= 0,01	* digits - 327,67
ACC_Z [m/s ²]	= 0,005	* digits - 163,835	GYRO_Z [°/s]	= 0,01	* digits - 327,67

Connector Layout
Connector type

Pin	Name	Description	Color
1	CAN H	CAN Bus High	White
2	CAN L	CAN Bus Low	Green
3	GND	Ground	Black
4	n.c.	Not Connected	-
5	Vext	Power in (8 – 18V)	red

Binder 719, 5 PF
(front side)

Binder 719, 5 PM
(front side)
mating plug


plug @ module

On request other options are possible for the CAN-line connector of all 2D CAN modules.

Please take a look at the product group [Connectors] in the 2D Product catalog.

Supplementary Sheet

The Figure shown beneath shows the "correct directions" for the accelerometers in three directions (x, y and z) as well as the three included gyros. The directions are essential if you calibrate this sensor using Winlt.

